Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

Compressive sensing imaging through atmospheric turbulence

Gabriela Paunescu, Daniel Wegner, Peter Lutzmann, Endre Repasi Salamanca, 6 - 7 May 2019

Motivation

- The technique allows the reconstruction of a high resolution image using data acquired with a lower resolution sensor
- Number of acquirements < image resolution</p>
- To expand further spectral ranges for applications as e.g. gated viewing and 3D imaging sensors
- To surrogate expensive 2D detector arrays
- FPA-images through turbulence degrades due to intensity fluctuation, distortion, and blur, notably for long-range applications
- The sensitivity of CS imaging techniques to atmospheric turbulence has not been rigorously investigated so far
- To date, no comparative study on the turbulence influence on both types of systems is available

Compressed sensing measurement

Scene imaged on the DMD

Experimental setup

Simultaneously acquisition of complementary patterns modulated signal:

- Sum of the two signals used for intensity variation correction
- Improvement of image reconstruction
- Background light correction
- Multispectral imaging e.g. VIS and SWIR

Illumination sources and detectors

Light source	Detector	Overlap spectral range
Halogen lamp	Si photodiode	VIS: 350 – 1100 nm
Halogen lamp	InGaAs photodiode	SWIR: 800 – 1700 nm
CW laser	Si photodiode	VIS: 532 nm
CW laser	InGaAs photodiode	SWIR: 1550 nm
Pulse laser	InGaAs photodiode	SWIR: 1550 nm

Pattern selection

M patterns based on Hadamard matrix are selected using different methods:

- A: Sequency ordered patterns
- B: Scene adapted pattern selection
- C: Image collection relevant patterns
- D: Number of blocks ordered patterns

SWIR images acquired with pulse laser illumination

- Reconstructions: 256 x 256 pixels
- Scene adapted pattern selection
- Pulse illumination: 1550 nm, 10 ns, 4 µJ

CS Ratio: M/N [%]

Image quality metrics

Structural Similarity Index

Mean Square Error

- A: Sequency ordered patterns
- B: Scene adapted pattern selection
- C: Image collection relevant patterns
- D: Number of blocks ordered patterns

Experiments through turbulence

Compressive Sensing

	Compressive Sensing	SWIR Camera
Detector	InGaAs single element (2x)	InGaAs - FPA
Resolution	256 x 256	640 x 512 (256 x 256 used)
Pixel Size	41.1 µm (3 x 3 micromirrors pro pixel)	25 µm
Optics	600 mm F/6	400 mm F/4
IFOV	68.5 mrad	62.5 mrad

CS imaging through turbulence

Comparison FPA – CS under strong turbulence

Data fitting

 $I_{circle}(x,y) = c_{background} + c_{circle} \cdot sigmoid\left(s, \sqrt{(x-x_0)^2 + (y-y_0)^2}, r_0\right)$

 r_0 – radius of the circle

 x_0 , y_0 –center of the circle coordinates

s – sharpness parameter

 $Fluctuations = IFOV \times \sqrt{std(x_0)^2 + std(y_0)^2}$

Evaluation of position fluctuations

Aparent integration time:Number of patterns × Integration time / patternTotal acquisition time:Number of patterns × DMD frame rate

Summary

- Compressive sensing measurements have been performed in SWIR and VIS range - non-coherent and coherent illumination (cw and pulse)
- Four different methods have been applied and compared to select the encoding pattern based on Hadamard matrix
- Turbulence influence on a SWIR CS imaging was investigated in comparison to an InGaAs-FPA based camera
- The measurements showed that the CS reconstructed images experience similar turbulence-induced effects like the FPA-based camera
- The experiments performed so far could not demonstrate an advantage for one of the two image acquisition concepts

